Path Attenuation Estimates for the DPR

Robert Meneghini¹, Hyokyung Kim², Liang Liao²

- 1. NASA/GSFC
- 2. Morgan State University

Outline

- Overview
- Issues, algorithm improvements
- Summary

Overview

- Results suggest that the dual-frequency version of the SRT is more accurate than its single-freq counterpart
 - Accuracy of estimate is directly related to variance of reference data
 - Variance of $[\sigma^0(Ka)-\sigma^0(Ku)]$ is smaller than the variance of either $\sigma^0(Ka)$ or $\sigma^0(Ku)$ alone by virtue of the relatively high correlation coefficient $\rho(\sigma^0(Ka), \sigma^0(Ku))$
 - Using different independent reference data sets, we find that correspondence between the various δA estimates is better than that between the various A(Ku) or A(Ka) estimates

SON Statistics

Rain Points (precipFlag@Ka)

Ocean:39374, Land:10523

Overview

- However, there are several problems with DSRT
 - The dynamic range is limited to cases where Ka-band signal is detected:
 - Over ocean: 0.4% (nadir) to 0.8% (90) of data is missed
 - Over land: 0.75% (nadir) to 2% (90) of data is missed
 - Measurements are limited to the inner swath
 - The ratio A(Ka)/A(Ku) = p is needed to convert δA to A(Ku) and A(Ka)
 - DSD data and matching of $A_{DSRT}(Ka)$ to $A_{SRT}(Ka)$ suggests p = 6 is a good approximation
 - Better approximation, based on data, is desirable

Issues/Improvements

- Generation of temporal reference data set
- Use of dual-freq information in outer swath
- Estimating the ratio A(Ka)/A(Ku)
- Direct Validation of the PIA Estimates
- Multi-beam (sub-FOV) & NUBF
- Reduction in variance of σ^0 at near-nadir inc.
- Implementation of wet-surface temp ref data

Temporal look-up tables

- Mean, Std Dev & counts of prior rain-free σ^0 data categorized by location & incidence angle
- Particularly useful near coastlines, rivers, islands, peninsulas
- Not implemented in version 3 but will be in version 4

Recalculation of Temporal Files (with latest calibration constants)

- Fixed grid, 0.5° x 0.5°
- Four files, separated by season
 - DJF, MAM, JJA, SON
- Each file comprised of 4 sub-files
 - Ocean, Land, Coast, All
- Each sub-file contains the statistics of rain-free σ^0 for each of the 'channels'
- Channels include: Ku, Ka, KaHS, Ka/Ku difference

- Experiments with variable area-averages
 - Can we reduce the variance of the reference data relative to the fixed area-averaging boxes
 - We use a higher-resolution fixed grid but with variable area-averaging domains
 - the procedure consists of two steps
 - Start with a small area and expand until a sufficient number of samples is obtained (N ≥ N_{th}) &
 - find a local minimum in the std dev (i.e., keep expanding area until std dev begins to increase)
 - We've looked at 3 ways of expanding the area
 - Uniform, Step-wise & Template

Uniform

- Simple expansion from 1 box to 3x3 to 5x5, etc
- Stop when $N \ge N_{th}$ and std dev is a local minimum

Step-wise

- Add one box to the area, at each step, in such a way that the std dev of the data in the enlarged area is minimum
- Stop when $N \ge N_{th}$ and std dev is a local minimum

Template

- For given number of boxes, construct all possible configurations
- choose those configurations for which $N \ge N_{th}$; among these select the one with the smallest std dev
- 'template' approach gives the minimum variance configuration but runs extremely slowly for large N

Std Dev [$\sigma^0(Ku)$], $\theta = 3.75^\circ$

2014/09-11 Stdev [$\sigma^0(\mathrm{Ku})$], $\theta=0.75^\circ$

2014/09-11 Stdev [σ^0 (Ku)], $\theta = 15.00^{\circ}$

2014/09-11 Stdev [σ^0 (DPR)], $\theta = 0.75^\circ$

- It appears that we can decrease average std dev assoc with the temporal reference (at Ku or Ka-band) by about 30-40% (going from fixed to step-wise or template)
- The decrease is smaller for the differential data: about 17-25%
- Many questions to be answered
 - What is the impact on PIA estimates?
 - How do the weights on the temporal change relative to spatial reference?
 - Do we see any minima if we take the step-wise to a much larger number of cells?
 - How do the results compare with other classification schemes?

Use of dual-freq info in outer swath

- As the dual-frequency estimate of A(Ku) is considered more accurate, can we use information from inner swath for the outer swath (OS) path attenuation estimates?
- By matching SRT with DSRT PIA's either at the boundaries (13, 37) or the full inner swath, we can compute an offset to the Ku-band reference
- This offset can be used in the outer swath, providing a modified PIA(Ku) in OS

Modify Ku-band reference data so that $\Sigma A(SF, Ku) = \Sigma A(DF, Ku)$ either along $\angle 13$, $\angle 37$ or full inner swath

New reference = Old reference + Δ

This Δ change is then applied to Reference data in outer swath

∠37

Left: Single-frequency Ku-band Estimate (full swath)

Center: Modified Single-frequency Ku-band Estimate (full swath)

Right: 'Best Estimate': DF(Ku) estimate in IS; modified SF in OS (all estimates are derived from forward along-track ref data)

Using dual-freq information in the Outer Swath

- Although the example shown is encouraging, the examples done to date show varying degrees of success
- The critical assumption is that the differences between the SRT & DSRT seen in the inner swath can be used to modify the estimates in the outer swath – i.e., the biases are spatially correlated
- We need an independent assessment of the results to determine whether the approach is useful

Estimating the ratio A(Ka)/A(Ku)

- Analysis of raindrop size distribution data suggests that p=A(Ka)/A(Ku)=6 is a good approximation
- Also, as DSRT(Ka) depends on p but SRT(Ka) does not: we can use 'good' data to choose p so that the RMS difference between DSRT & SSRT is minimized
 - This also yields p≈6
- Nevertheless, we would like something better that depends on the actual $Z_m(Ku)$, $Z_m(Ka)$ data

lowa		Wallops			Swiss
APU	2DVD	APU	2DVD	Joss	Joss
N=70,186	N=25,026	N=52,521	N=49,898	N=15,273	N=14,978
p=4.84	p=5.41	p=5.90	p=6.68	p=6.44	p=6.34

A(Ka)/A(Ku) Derived from Measured DSD

DSD data courtesy of Ali Tokay, Matthias Steiner

Estimating the ratio A(Ka)/A(Ku)

- Contour plots of p in the δk -Z(Ku) plane suggests that p can be determined if δk & Z(Ku) are known
- However, δk & Z(Ku) are not directly measurable: requires attenuation correction at both freq's
- In principle, the p estimation could be implemented as an iterative procedure

The plot below shows that from $\delta k = k(Ka)-k(Ku)$ and Z(Ku), the ratio p can be estimated

However, what we estimate is δA (the path integral of δk) and $Z_m(Ku)$, the measured rather than the actual Ku-band radar reflectivity

IFLOODS: APU, nPoint= 62287

- LUT can be derived from results shown in the previous slide
- Retrieval modules for Ku, Ka are needed to convert Z_m to Z
- Whether the procedure converges is not known

Validation

How can we validate PIA estimates?

- Present & past solver modules use both HB & SRT
- Comparisons of Z(Ku) with Z(S) are effective in validating PIA(final) but not necessarily PIA(SRT)
- Need a solver module that uses SRT or HB but not both this has been done for α -adj & final value
- Identify well-calibrated GV radar site(s)
 - Require several years of overpass data
 - Use these data to evaluate SRT & DSRT
 - Also use data to evaluate any change in SRT algorithm

Radar Reflectivities from GPM DPR and WSR-88D in Melbourne, Florida (Height=3.0)

Summary

- By most measures, the dual-frequency version of the SRT provides more accurate estimates of PIA
 - Particularly true at Ku-band
- Nevertheless, there are a number of improvements that would be desirable
 - Lower variance temporal reference data sets
 - Use of dual-freq information in outer swath
 - Improved estimates of A(Ka)/A(Ku)
 - Use of multi-beam (sub-FOV) PIA estimates for NUBF
- A more direct validation method is needed to assess any potential improvements